– Bertini M, Vitali F, Santini L, et al. Implantable defibrillator-detected heart failure status predicts atrial fibrillation occurrence. Heart Rhythm 2022;19:790–7. 1016/j.hrthm.2022.01.020
– Mitter SS, Alvarez-Garcia J, Miller MA et al. Insights From HeartLogic Multisensor Monitoring During the COVID-19 Pandemic in New York City. JACC Heart Fail. 2020 Dec8(12):1053-1055. doi: 10.1016/j.jchf.2020.09.009
– Egolum UO, Parikh K, Lekavich C et al. Applications of the Multisensor HeartLogic Heart Failure Monitoring Algorithm During the COVID-19 Global Pandemic. JACC Case Rep. 2020 Nov 182(14):2265-2269. doi: 10.1016/j.jaccas.2020.09.035
– Heggermont W, Nguyen PAH, Lau CW, Tournoy K. A Steep Increase in the HeartLogic Index Predicts COVID-19 Disease in an Advanced Heart Failure Patient. Case Rep Cardiol. 2020 Jul 112020:8896152. doi: 10.1155/2020/8896152.
– Feijen M, Egorova AD, Beeres SLMA, Treskes RW. Early Detection of Fluid Retention in Patients with Advanced Heart Failure: A Review of a Novel Multisensory Algorithm, HeartLogic(TM). Sensors (Basel). 2021 Feb 1521(4):1361. doi: 10.3390/s21041361.
– Treskes RW, Beles M, Caputo ML et al. Clinical and economic impact of HeartLogic™ compared with standard care in heart failure patients. ESC Heart Fail. 2021 Apr8(2):1541-1551. doi: 10.1002/ehf2.13252
– Yapejian AR, Fudim M. Novel of respiratory rate increases using the multisensor HeartLogic heart failure monitoring algorithm in COVID-19-positive patients: a case series. Eur Heart J Case Rep. 2021 Feb 205(2):ytab067. doi: 10.1093/ehjcr/ytab067.
– Calò L, Bianchi V, Ferraioli D et al. Multiparametric Implantable Cardioverter-Defibrillator Algorithm for Heart Failure Risk Stratification and Management: An Analysis in Clinical Practice. Circ Heart Fail. 2021 Oct14(10):e008134. doi: 10.1161/CIRCHEARTFAILURE.120.008134.
– Cao M, Stolen CM, Ahmed R et al. Small decreases in biventricular pacing percentages are associated with multiple metrics of worsening heart failure as measured from a cardiac resynchronization therapy defibrillator. Int J Cardiol. 2021 Jul 15335:73-79. doi: 10.1016/j.ijcard.2021.03.073.
– Gardner RS, Thakur P, Hammill EF et al. Multiparameter diagnostic sensor measurements during clinically stable periods and worsening heart failure in ambulatory patients. ESC Heart Fail. 2021 Apr8(2):1571-1581. doi: 10.1002/ehf2.13261.
– Heggermont WA, Van Bockstal K. Heartlogic(TM): ready for prime time? Expert Rev Med Devices. 2022 Feb19(2):107-111. doi: 10.1080/17434440.2022.2038133.
– López-Azor JC, de la Torre N, García-Cosío Carmena MD et al. Clinical Utility of HeartLogic, a Multiparametric Telemonitoring System, in Heart Failure. Card Fail Rev. 2022 Apr 218:e13. doi: 10.15420/cfr.2021.35.
– Feijen M, Egorova AD, Treskes RW et al. Performance of a HeartLogic(TM) Based Care Path in the Management of a Real-World Chronic Heart Failure Population. Front Cardiovasc Med. 2022 May 69:883873. doi:10.3389/fcvm.2022.883873.
– de Juan Bagudá J, Gavira Gómez JJ, Pachón Iglesias M et al. Remote heart failure management using the HeartLogic algorithm. RE-HEART registry. Rev Esp Cardiol (Engl Ed). 2022 Sep75(9):709-716. doi: 10.1016/j.rec.2021.09.015.
– Chilcote JL, Summers RP, Vaz DG, Barber R et al. Concurrent Assessment of the CardioMEMS HF System and HeartLogic HF Diagnostic: A Retrospective Case Series. J Card Fail. 2022 Jan28(1):44-55. doi: 10.1016/j.cardfail.2021.07.010.
– Hernandez AF, Albert NM, Allen LA et al. Multiple cArdiac seNsors for mAnaGEment of Heart Failure (MANAGE-HF) – Phase I Evaluation of the Integration and Safety of the HeartLogic Multisensor Algorithm in Patients With Heart Failure. J Card Fail. 2022 Aug28(8):1245-1254. doi: 10.1016/j.cardfail.2022.03.349.
– Bertini M, Vitali F, Santini et al. Implantable defibrillator-detected heart failure status predicts atrial fibrillation occurrence. Heart Rhythm. 2022 May19(5):790-797. doi: 10.1016/j.hrthm.2022.01.020.
– Guerra F, D’Onofrio A, De Ruvo E et al. Decongestive treatment adjustments in heart failure patients remotely monitored with a multiparametric implantable defibrillators algorithm. Clin Cardiol. 2022 Jun45(6):670-678. doi: 10.1002/clc.23832.
– Ziacchi M, Calò L, D’Onofrio A et al. Implantable Cardioverter Defibrillator Multisensor Monitoring during Home Confinement Caused by the COVID-19. Pandemic Biology (Basel). 2022 Jan 1211(1):120. doi: 0.3390/biology11010120.
– Capucci A, Wong JA, Gold MR et al. Temporal Association of Atrial Fibrillation With Cardiac Implanted Electronic Device Detected Heart Failure Status. JACC Clin Electrophysiol. 2022 Feb8(2):182-193. doi:10.1016/j.jacep.2021.09.015.
– Wariar R, Wen G, Jacobsen C et al. Evaluation of Medicare Claims for the Development of Heart Failure Diagnostics. J Card Fail. 2022 May28(5):756-764. doi: 10.1016/j.cardfail.2021.11.008.
– Bertini M, Vitali F, D’Onofrio A et al. Combination of an implantable defibrillator multi-sensor heart failure index and an apnea index for the prediction of atrial high-rate events. EP Europace 2023 Mar 7:euad052. doi:10.1093/europace/euad052.
– Bontempi L, Cerini M, Salghetti et al. Use of a novel implantable cardioverter-defibrillator multisensor algorithm for heart failure monitoring in a COVID-19 patient: A case report. Clin Case Rep. 2021 Jan 28;9(3):1178-1182.
– Zanchi S, La Greca C, Di Nanni N, Fogliata E, Zani M, Pecora D. A reproducible sensor pattern to suspect COVID19 pulmonary infection with LATITUDE. Case report and literature review. Pacing Clin Electrophysiol. 2022 Mar;45(3):425-430. doi: 10.1111/pace.14469.
– Santini L, D’Onofrio A, Dello Russo A, et al. Prospective evaluation of the multisensor HeartLogic algorithm for heart failure monitoring. Clinical Cardiology 2020; 10.1002/clc.23366.
– Calò L, Capucci A, Santini L, et al. ICD-measured heart sounds and their correlation with echocardiographic indexes of systolic and diastolic function. Journal of Interventional Cardiac Electrophysiology 2019. https://doi.org/10.1007/s10840-019-00668-y
– Capucci A, Santini L, Favale S, et al. Preliminary experience with the multisensor HeartLogic algorithm for heart failure monitoring: a retrospective case series report. ESC Heart Failure 2019; DOI: 10.1002/ehf2.12394
– Boehmer et al. “Rationale and Design of the Multisensor Chronic Evaluations in Ambulatory Heart Failure Patients (MultiSENSE) Study”, J of innovations in CRM, 2015
– Boehmer et al. “A Multisensor Algorithm Predicts Heart Failure Events in Patients with Implanted Devices: Results from the MultiSENSE Study” JACC Heart Fail. 2017;5(3):216-25.
– Whellan, D.J. & Lindenfeld, J. “Easy to Predict, Difficult to Prevent” JACC 2017 (Editorial comment)
– Gardner et al. “HeartLogic Multisensor Algorithm Identifies Patients During Periods of Significantly Increased Risk of Heart Failure Events Results From the MultiSENSE Study” Circ Heart Fail. 2018;11
– Santini et al. “Preliminary experience with a novel Multisensor algorithm for heart failure monitoring: The HeartLogic index”; Clin Case Rep. 2018;6:1317–1320.
– Gardner et al. HeartLogic Multisensor Algorithm Identifies Patients During Periods of Significantly Increased Risk of Heart Failure Events Results From the MultiSENSE Study. Circulation: Heart Failure 2018; 11: e004669.


Toni cardiaci

Cao M, Gardner RS, Hariharan R, et al. Ambulatory Monitoring of Heart Sounds via an Implanted Device Is Superior to Auscultation for Prediction of Heart Failure Events. Journal of Cardiac Failure 2020; 26(2): 151-159.
– Siejko et al. “Feasibility of Heart Sounds Measurements from an Accelerometer within an ICD Pulse -Generator”. Pacing Clin Electrophysiol. 2013;36(3):334-46
– Thakur et al. “Haemodynamic Monitoring of Cardiac Status Using Heart Sounds from an Implanted Cardiac Device” ESC Heart Fail. 2017;4(4):605-13

– Klodas et al. “Third Heart Sound Measured by Implanted Accelerometer in Heart Failure Patients is Coincident with the Deceleration Phase of Early Diastolic Filling” J Card Fail. 2017;23(8):S68-S9
– Gardner et al. “Ambulatory S3 Measured by an Implanted Device Changes Consistently with Echocardiography in Stable and Acute Decompensated Heart Failure” J Card Fail. 2017;23(8):S64
– Cao et al. “Device-measured Third Heart Sound Predicts Heart Failure Events Better than Auscultated Third Heart Sound” EP Europace. 2017;19(Suppl 3):iii332-iii3
– Cao et al. “Heart Sound Amplitudes Measured by Accelerometer Reflect Auscultated S3 Heart Sound Volume Grades” Circulation 2017;136:A16050
– Klodas et al. “S3 Amplitude Measured Using a CRT-D Is Correlated to Echocardiographic Filling Parameters in Heart Failure Patients” J Card Fail. 2013;19(8):S67
– Boehmer et al. “Third heart sound during atrial fibrillation? Confirming the existence of cardiac vibrations during deceleration phase of early diastolic filling while in atrial fibrillation” European Journal of Heart Failure, 20 (Suppl. S1), 5–638; P1034


– Goetze et al. “Ambulatory Respiratory Rate Trends Identify Patients at Higher Risk of Worsening Heart Failure in Implantable Cardioverter Defibrillator and Biventricular Device Recipients: A Novel Ambulatory Parameter to Optimize Heart Failure Management” J Interv Card Electrophysiol. 2015;43(1):21-9
– Forleo et al. “Long-term monitoring of respiratory rate in patients with heart failure: the Multiparametric Heart Failure Evaluation in Implantable Cardioverter-Defibrillator Patients (MULTITUDE-HF) study” J Interv Card Electrophysiol 2015; 43 (2): 135-44

– Aktas et al. “Patients with Elevated Respiratory Rates are at Higher Risk of Heart Failure Events in 30 Days” Heart Rhythm. 2016;13(5):S270
– Boehmer JP et al. “Variation in Daily Median Respiratory Rate Identifies Patients at Higher Risk of Worsening HF in 30 Days” Heart Rhythm. 2013;10(5):S66
– Capucci et al. “Rapid shallow breathing worsens prior to heart failure decompensation” European Heart Journal 2014, P3695
– Hatlestad et al. “Accuracy of Respiration Rate Trends from an Implanted CRM Device” J of Cardiac Failure 2008 P053
– Rials et al. “Device-Measured Rapid Shallow Breathing With Exertion Worsens Prior to Heart Failure Decompensation” European Heart Journal 2015 P169
– Aktas et al. “Patients with Elevated Respiratory Rate are at Higher Risk of Heart Failure Events in 30 Days” Heart Rhythm 2016; 13(5): S270, PO03-48
– Lindenfeld et al. “Readmissions or death are more likely when device-derived rapid shallow breathing index worsens during heart failure hospitalization“ European Journal of Heart Failure, 20 (Suppl. S1), 5–638; P1851
– Boehmer et al. “Device measured rapid shallow breathing index reflects changing respiratory patterns but minute ventilation reflects changing activity during worsening heart failure in ambulatory patients“ European Journal of Heart Failure, 20 (Suppl. S1), 5–638; 2081
– Boehmer et al. “Device measured rapid shallow breathing index and not minute ventilation reflects changes in dyspnea status in ambulatory heart failure patients“ European Journal of Heart Failure, 20 (Suppl. S1), 5–638; 2082

Impedenza toracica

– Vollmann et al. “Clinical Utility of Intrathoracic Impedance Monitoring to Alert Patients with an Implanted Device of Deteriorating Chronic Heart Failure” Eur Heart J. 2007;28(15):1835-40
– Yu et al. “Intrathoracic Impedance Monitoring in Patients with Heart Failure. Correlation with Fluid Status and Feasibility of Early Warning Preceding Hospitalization” Circulation 2005;112 (6):841-8
– Wang, “Fundamentals of Intrathoracic Impedance Monitoring in Heart Failure” Am J Cardiol. 2007; 99(10A):3G-10G
– Fonarow GC, and ADHERE Scientific Advisory Committee. The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure. Rev Cardiovasc Med 2003;4:S21-30

Livello di attività

– Rosman et al. “Measuring Physical Activity With Implanted Cardiac Devices: A Systematic Review” J Am Heart Assoc. 2018 May 17;7(11)
– Palmisano et al. “Italian Association of Arrhythmology and Cardiac Pacing (AIAC). Physical Activity Measured by Implanted Devices Predicts Atrial Arrhythmias and Patient Outcome: Results of IMPLANTED (Italian Multicentre Observational Registry on Patients With Implantable Devices Remotely Monitored) J Am Heart Assoc. 2018 Feb 24;7(5)
– Jamé et al. “Predictive value of device-derived activity level for short-term outcomes in MADIT-CRT” Heart Rhythm. 2017 Jul;14(7):1081-1086
– Vegh et al. “Device-measured physical activity versus six-minute walk test as a predictor of reverse remodeling and outcome after cardiac resynchronization therapy for heart failure” Am J Cardiol. 2014 May 1;113(9):1523-8
– Conraads et al. “Physical activity measured with implanted devices predicts patient outcome in chronic heart failure” Circ Heart Fail. 2014 Mar 1;7(2):279-87
– Pressler et al. “Validity of cardiac implantable electronic devices in assessing daily physical activity” Int J Cardiol. 2013 Sep 30;168(2):1127-30

– Hariharan et al., “Patients with Reduced Level of Physical Activity are at Higher Risk of Worsening Heart Failure Events in 30 Days” Heart Rhythm. 2016;13(5):S149-S50

Frequenza cardiaca notturna

– Fox K, et al. “Resting heart rate in cardiovascular disease” J Amer Cardiol 2007;50:823-830.
– Boehmer JP, et al., “Heart failure diagnostic sensor measurements change prior to heart failure decompensation events” J Card Fail 2017;23(8):S65.
– Fox K et al. on behalf of the BEAUTIFUL investigators. “Heart rate as a prognostic risk factor in patients with coronary artery disease and leftventricular systolic dysfunction (BEAUTIFUL): a subgroup analysis of a randomised controlled trial”. Lancet 2008; 372: 817–21.
– Boriani et al. “Incidence and clinical relevance of uncontrolled ventricular rate during atrial fibrillation in heart failure patients treated with cardiac resynchronization therapy“ European Journal of Heart Failure (2011) 13, 868–876

– Gardner RS, et al. “Heart failure diagnostic sensor measurements durin clinically stable epochs in ambulatory heart failure patients” Eur J Heart Fail 2017;19(1):S277,P1132.
– Hatlestad et al., “Night-Time Elevation Angles in MultiSENSE Study are Related to Symptoms of Orthopnea & Paroxysmal Nocturnal Dyspnea” Journal of Cardiac Failure 2012 S8-020

Questa sezione è realizzata grazie ad
un contributo non condizionato di